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SUMMARY

A three-dimensional constitutive model for joints is described that incorporates nonlinear elasticity based
on volumetric elastic strain, and plasticity for both compaction and shear with emphasis on compaction.
The formulation is general in the sense that alternative specific functional forms and evolution equations
can be easily incorporated. A corresponding numerical structure based on finite elements is provided so that
a joint width can vary from a fraction of an element size to a width that occupies several elements. The
latter case is particularly appropriate for modeling a fault, which is considered simply to be a joint with
large width. For small joint widths, the requisite equilibrium and kinematic requirements within an element
are satisfied numerically. The result is that if the constitutive equation for either the joint or the rock is
changed, the numerical framework remains unchanged. A unique aspect of the general formulation is the
capability to handle either pre-existing gaps or the formation of gaps. Representative stress–strain plots are
given to illustrate both the features of the model and the effects of changes in values of material parameters.
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1. INTRODUCTION

This paper describes a basic constitutive equation and numerical algorithm for rock containing either
joints or faults. In nature, joints appear roughly as a set of parallel planes with uniform spacing. The
width of each joint is typically small. On the other hand, a fault often appears singly and with a width
that can be orders of magnitude larger than a joint. Nevertheless, insofar as can be determined, the
constitutive features of joints and faults, other than width, are similar. Therefore, in the following,
we refer only to joints with the understanding that a fault is simply modeled as a joint with a
large width.

The ubiquitous nature of joints in rock mass and its importance in understanding rock mechanics for
a variety of applications have been admirably summarized by Cook [1] and Jing [2]. Cook [1] points
out two main approaches to understanding the effects of joints. The first approach attempts to describe
the aggregate effect of many joints or systems of joints, and the second treats joints as discrete entities.
Examples of continuum constitutive models that describe the composite effect of many joints within a
representative volume element are given by Murakami et al. [3], Cai and Hori [4], Lee [5], Chalhoub
and Pouya [6], and Brannon et al. [7]. Our approach falls in the second category of a discrete joint
model. However, it is hoped that with the efficiencies introduced in our constitutive model and
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numerical solution, many joints can be studied numerically in order to develop aggregate models
suitable for simulations on larger spatial scales.

A difficulty connected with analyzing jointed rock is that there is no way of determining the in situ
features of either a single joint or a set of joints. Experimental data are often based on joints manufactured
in the laboratory [8, 9], and constitutive models for shear are derived frequently on assumed
roughness profiles [10, 11]. Trivedi [12] creates joints by fracturing physical specimens, but it is not
clear if this is a good replica of a physical joint that contains rubble.

There are numerous instances where modeling is used to fit curves to experimental data. However,
focusing on one particular path with a precise matching to experimental data is unwarranted in light
of the uncertainty associated with both the properties of in situ joints and the variety of stress paths
inherent in most problems. The objective of a good constitutive model should be to provide the
material response for all paths (Gens et al., [13]). Also, general constitutive models are necessary if a
particular path is not known a priori, as in solutions to a general boundary-value problem in which
each point can experience a unique path. Our approach is to face the uncertainty of in situ joint
behavior by formulating and using a constitutive model that reflects the essential characteristics of
joints and faults with sufficient flexibility to cover expected responses of joints in a variety of
geological settings.

The intent of this study is to present a new joint constitutive model and to combine the realistic but
relatively simple model for joints with an efficient numerical solution. Specifically, the numerical
formulation allows the joint width to range from a fraction of the mesh size in the discretization of
the problem to a width covering several elements. By allowing the joint to have an arbitrary width,
faults can be analyzed with the same formulation. The joint and rock follow separate constitutive
models. If the joint exists within an element of the mesh, kinematic and equilibrium conditions for
the joint and surrounding material (rock) within the element are enforced numerically. The
advantage of this approach is that constitutive equations for either the joint or the rock can be
modified without changing the computational framework. Furthermore, discontinuities related to a
joint can exist within an element.

Because of the significant engineering importance of large-scale failure of earth ‘structures’
due to shear instability, extensive experimental and micromechanical investigations have been
performed on joint behavior under shear. Representative examples of using assumed forms of
joint asperities to develop suitable constitutive equations are those of Plesha [10], Haberfield and
Johnston [14], Huang et al. [15], Seidel and Haberfield [16], Grasselli and Egger [17], and Mihai
and Jefferson [18].

There has been much less emphasis placed on joint behavior under normal compaction and
extension. However, the experimental work of Bandis et al. [19], Desai and Fishman [20], and
Saeb and Amadei [21] provide experimental data that show response features in compaction, in
addition to data that provide the interaction effect of normal and shear stress in a joint. Of course,
behavior under compaction is important even for problems dominated by shear because of the
change in normal stress associated with shear-enhanced compaction and dilatation. Wang et al. [22]
have developed a plasticity model that represents nicely the interactive effects of normal and shear
displacements as well as shear anisotropy. However, one of their elasticity parameters depends on
total joint compression rather than just the elastic compression, so prediction of unloading is
problematic.

The proposed joint model focuses on what we consider to be the essential features of joints
including plasticity and nonlinear elasticity under compaction and unloading. The shearing part of
the model is nonlinearly elastic up to a limit value of shear that depends on the magnitude of
normal stress. Further loading in shear results in plastic softening, dilatation, the reduction of shear
stress with joint shear strain, and the transition to Mohr–Coulomb behavior with large shear
motion, either monotonic or cyclic. A significant feature of the joint constitutive equation is the
capability to handle gaps that are either created or pre-existing through the use of positive plastic
normal strain. Such a capability is especially important when waves are transmitted through
multiple joints because waves can be trapped between joints when joints open to form gaps. Often,
sliding interfaces are introduced to handle joints [23]. In our approach, sliding is handled
intrinsically through the constitutive equation. The model is illustrated by examining stress–strain
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2015)
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response that shows the effects of various material parameters, along with the effects of joint width
and gaps.

In the next section, preliminary definitions and the constitutive equation for rock are provided. In the
following section, a detailed description of the constitutive equation for joints is given. Then Section 4
provides the details of how rock and joint constitutive features are combined to form composite
constitutive features for use in an element-based numerical algorithm. The numerical algorithm is
used with a driver program that provides strain or stress paths with results displayed in Section 5
that illustrate features of the joint model with and without a segment of rock. Finally, a summary
with conclusions is given in the last section of the paper.
2. PRELIMINARY MATERIAL

2.1. Definitions and notation

A joint can be thought of as a weak plane of rubble between two beds of rock. A photograph
illustrating joints in an exposed geological structure is shown as Figure 1. Typically joints appear
in sets parallel to the bedding planes of the rock. The spacing between joints within each set may
vary from centimeters to 10m [24]. One set of joints may be offset from a second set by a
terminating plane as indicated by the sketch in Figure 2a. It is also possible that a second set of
joints may overlay the first where the normal to the joints in one set forms an arbitrary angle with
respect to the normal of the second set as indicated in Figure 2b. On the other hand, a fault
appears singly, and is not associated with a terminating plane. A joint has not experienced motion
in shear whereas a fault has. This feature is illustrated by the offset of a joint set because of a fault
in Figure 2c. The width of a joint is considered to be of the order of millimeters to centimeters
while the width of a fault may be of the order meters. In the following, the formulation is focused
on joints, but the framework of the resulting constitutive equation should be suitable for faults
as well.

If a joint is subjected to compression, the fill provides resistance to closure where the normal
component of traction is a nonlinear function of the amount of joint closure. A joint is generally
considered to provide little or no resistance to tensile stress. The objective is to provide a
constitutive equation that provides these features.

Joint constitutive behavior is typically described in terms of the joint plane and its normal.
Therefore, components of field variables are expressed relative to a local basis (n, t,p) that is used
throughout the paper. A unit vector perpendicular to the plane of the joint is denoted by n. If a two-
dimensional analysis is considered, a unit vector t, tangent to the joint, is added to define the plane.
Figure 1. Photograph of jointed rock.
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Figure 2. Sketches of joint sets and a fault. (a) One joint set translated with respect to first. (b) One
joint set rotated and overlayed with respect to a second joint set. (c) Combination of a joint set and

a fault.
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For the three-dimensional case followed here, a third unit vector perpendicular to the first two, p=n× t,
completes the triad with t-p lying in the plane of the joint.

Although constitutive equations are constructed independently of numerical techniques, ultimately a
numerical procedure must be used to obtain solutions to problems involving wave propagation and
material failure. In addition, elastic and plastic strains exist so care must be taken with notation to
identify clearly the variables being considered.

Stress, σ, and strain, e, must be determined for the rock, the joint and, later, for an element involving
both rock and a joint. A superscript ‘R’ is used for the rock, ‘J’ for a joint, and no subscript is used for
element-based variables. Additional superscripts ‘e’ and ‘p’ on strain designate elastic and plastic parts,
respectively, of the strain tensor. No superscript implies total strain consisting of the sum of elastic and
plastic parts. Because the joint material is nonlinear, all constitutive equations will be given in rate
form so that the formulation used for numerical implementation is easily obtained with the use of
stress and strain increments. A superposed dot represents a derivative with respect to time. Because
the formulation is rate independent, any monotonically increasing variable, including time, may be
used as a parameter to describe the loading process.

Constitutive equations for rock and joints are considered separately. Then the two are combined
within an element using a combination of kinematic and equilibrium constraints. The development
of element-based constitutive equations can be carried out either analytically or numerically. The
numerical approach is used here so that the overall algorithm is affected only slightly if either the
rock or joint constitutive equation is changed. A limitation of our formulation to date is an
assumption that the joints are parallel to the sides of square elements.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2015)
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2.2. Constitutive equation for rock

It is assumed the rock between joints is isotropic and linearly elastic. The constitutive equation in rate
form is
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in which the elastic constants are

ER
1 ¼ YR 1� vRð Þ

1þ vRð Þ 1� 2vRð Þ ER
2 ¼ vR

1� vRð ÞE
R
1 2GR ¼ YR

1þ vRð Þ (2)

with YR denoting Young’s modulus, GR the shear modulus, and vR Poisson’s ratio.

2.3. Generic form for plasticity and related numerical algorithm

The primary focus of this paper is on plasticity as a suitable constitutive model for joints. However,
there is no reason why the adjacent rock cannot be modeled also with plasticity. Here, the generic
form for plasticity models is summarized together with a simple numerical algorithm used later for
numerical simulations. Then the following sections provide various models of elastic-plastic
constitutive equations with no need for interspersing details of the numerical approach used for the
corresponding constitutive equation subroutine.

For small deformations, the constitutive equation for stress rate in terms of total, e, and plastic, eP,
strain rates is

_σ ¼ E
tan �� _ee _ee ¼ _e� _ep (3)

in which E
tan

denotes the tangent elasticity tensor. Because joints often exhibit nonlinear elasticity, we

allow for the possibility thatE
tan

depends on the elastic strain, ee. Introduce a yield function, F, such that
F<0 denotes an elastic regime, F=0 indicates plastic deformation may be occurring, and F>0 is not
allowed. Suppose F depends on stress and a set of scalar, history-dependent, effective plastic
parameters that are arranged as components of the column vector {ē}p. Introduce a monotonically
increasing plasticity parameter, ω, such that evolution equations for the plastic strain tensor and
effective plastic strain set are given in rate form as follows:

_ep ¼ _ωm _e
� �p ¼ _ω mf g (4)

in which m is an evolution tensor and each component of {m} denotes an evolution function for the
corresponding component of {ē}p. The choice of the yield and evolution functions defines the
particular plasticity model under consideration. Here, it is assumed that the evolution functions
depend on the same variables as the yield function. If an associative flow rule is used, then m=∂F/∂σ.

With the use of (3) and (4), the yield and evolution functions can be implicitly transformed to
functions of e and ω. For numerical simulations, we require the term ∂F/∂ω with the total strain e
fixed. With F assumed to be a function of stress, σ , and the effective plasticity variables, {ē}p, the
rate of F becomes
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2015)
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_F ¼ ∂F
∂σ

�� _σ þ ∂F=∂ eh iph i _e
� �p

(5)

where the bracket <> denotes a row vector. The use of (3) and (4) yields

_F ¼ ∂F
∂σ

�� Etan �� _e� _ωmð Þ þ _ω ∂F=∂ eh iph i mf g (6)

where the last term is the inner product of two vectors. The rate of F becomes

_F ¼ ∂F
∂e

�� _eþ ∂F
∂ω

_ω (7)

and (6) is used to obtain

∂F
∂e

¼ ∂F
∂σ

�� Etan ∂F
∂ω

¼ �∂F
∂σ

�� Etan ��mþ ∂F=∂ eh iph i mf g (8)

Theoretically, the consistency condition _F ¼ 0 is used to ensure the yield condition is continually
satisfied during plastic deformation. However, a numerical algorithm involves the use of finite
increments instead of rates of the strain variables. Typically, increments in total strain are
prescribed. Initially, the strain increments are assumed to be elastic, and the yield function is
evaluated. When the yield function is positive, the proposed procedure is to force the value of the
yield function to 0 while holding the total strain fixed. For this step, F can be considered a function
of the scalar variable, ω, so the process is simply one of finding a zero. Because ∂F/∂ω is typically
available, the Newton–Raphson procedure is appropriate. For simplicity, the values of the functions

E
tan
; ∂F=∂ω; m and {m} are held fixed, as indicated by a subscript ‘0’, for the iteration procedure

used to obtain the solution for the current step. Let ε denote a suitably small positive number. The
algorithm is summarized as follows under the assumptions that the increment in total strain Δe is
prescribed.

Start of Elasto-Plastic Algorithm

1. Update the elasticity tangent tensor E
tan

0 ¼ E
tanðe eÞ

2. Assume step is elastic. Update total strain, elastic strain and stress:

e←eþ Δe Δee ¼ Δe

ee←ee þ Δee σ←σ þ E
tan

0 ��Δee (9)

3. Evaluate F.
(i) If F≤ ε, then the step is elastic. A solution has been obtained. Go to Step 9.
(ii) If F> ε continue on to Step 4.

4. Evaluate the evolution functions, m0 and {m}0, and the derivative function, (∂F/∂ω)0 using the
current values of stress, elastic strain, plastic strain and effective plastic strain.

Start of Iteration Loop

5. Obtain an increment in the plasticity parameter:

Δω ¼ �F= ∂F=∂ωð Þ0
6. Obtain increments in plastic and effective plastic strain:

Δep ¼ Δωm0 Δef gp ¼ Δω mf g0
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2015)
DOI: 10.1002/nag



CONSTITUTIVE AND NUMERICAL FRAMEWORK FOR MODELING JOINTS
7. Update strain and stress variables

ep←ep þ Δep ef gp← ef gp þ Δ ef gp
Δee ¼ �Δep ee←ee þ Δee

σ←σþE
tan

0��Δee

8. Evaluate F. If F≤ ε, go to Step 9; otherwise go to Step 5.

End of Iteration Loop

9. Exit the algorithm.

End of Elasto-Plastic Algorithm

Higher-order algorithms can be obtained by evaluating m, {m}, ∂F/∂ω, and E
tan

within the
iterative loop. However, strain increments are often small enough that this added expense is not
necessary.
3. CONSTITUTIVE EQUATIONS FOR JOINTS

3.1. Joint strains

The width of the joint is denoted as wJ. Let z be the normal coordinate with respect to the mid-plane of
a point in the direction n as indicated in Figure 3. If u denotes the displacement of a material point
within the joint, then the relative displacement components for corresponding points at the upper
and lower surfaces of the joint are defined to be

bu ¼ bunnþ buttþ bupp ¼ u z¼wJ=2 � u
�� ��

z¼�wJ=2
(10)

The displacement field within the joint is assumed to be linear in z. The result is that ûn is the net
opening of the joint. Many authors choose the net closure to be positive, and for uniaxial strain, the
net closure is the volumetric compaction. Similarly ût and ûp denote the relative tangential
displacement components of the joint surfaces. Here, we use a sign convention, and components of
Figure 3. Notation for a joint.
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strain rather than relative surface displacements, to describe the kinematic behavior of the joint so that
the usual three-dimensional notation of continuum mechanics can be used. The normal and transverse
shear components of joint strain are defined to be

eJnn ¼
bun
wJ

eJnt ¼
but
2wJ

eJpn ¼
bup
2wJ

(11)

with the assumption that wJ≠ 0. A joint with 0 width can be treated within a constitutive framework as
a sliding interface if the normal component of stress is negative and allowed to open into a gap with
zero traction if the kinematics of the problem requires such a state.

The remaining components of joint strain eJtt; e
J
pp; e

J
tp

n o
are assumed to be based on the usual small-

deformation continuum approach and are of much less significance for our purposes than the
components defined in (11).

It is assumed that the joint strain is a linear combination of elastic and plastic parts

eJ ¼ eJ;e þ eJ;p (12)

and that the plastic parts of the strain components eJtt; e
J
pp; e

J
tp

n o
are 0.
3.2. Joint elasticity

Experimental data for joints typically exhibit both nonlinearly elastic and plastic behavior. A sketch of
typical features of experimental data for compaction is given in Figure 4.

If the elastic part is assumed to be isotropic, the elastic constitutive equation in rate form is chosen to
be analogous to (1) as follows:
Figure 4. Observed features for normal compaction and unloading of a joint.
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(13)

in which the superscript ‘J’ indicates these terms are applicable to the joint, and the over-script ‘tan’
emphasizes the point that these are the elastic tangent parameters. The following assumptions are
invoked: (i) Poisson’s ratio for the joint is the constant vJ0 ; and (ii) the other independent modulus is

a function of the elastic volumetric strain, eJ;evol.
Obtaining experimental values for Poisson’s ratio for joints is difficult, and the assumption of a

constant value is rather extreme. However, solutions for stress are often not overly sensitive to
values of Poisson’s ratio, especially in light of the large variations in values of other constitutive
parameters. An assumed value of vJ0 ¼ 0:2 is considered reasonable. To obtain an expression for
the tangent modulus EJ

1 , suppose that experimental compaction data are available for uniaxial
strain with eJnn , the only nonzero component of strain. The elastic part, eJ;enn , is obtained by
unloading. For this loading path, the volumetric strain equals the only nonzero component of
strain, or

eJ;evol ¼ eJ;enn (14)

Presumably, σJnn is measured so that the relationship

σJ
nn ¼ ge eJ;evol

� �
(15)

is available from experimental data. Also, for uniaxial strain

_σ J
nn ¼ E

tan

1
J _eJ;enn (16)

so that the tangent modulus, again based on experimental data, is

E
tan

1
J ¼ ∂ge

∂eJ;enn
≡ f e eJ;evol

� �
(17)

The other tangent moduli become

E
tan

2
J ¼ νJ0

1� νJ0
� �Etan1J 2GJ

tan
¼ 1� 2νJ0

� �
1� νJ0
� � E

tan

1
J (18)

If desired, the tangent Young’s and bulk moduli are

YJ
tan

¼ E
tan

1
J 1þ νJ0
� �

1� 2ν J0
� �

1� νJ0
� � BJ

tan

¼ E
tan

1
J 1þ νJ0
� �
3 1� νJ0
� � (19)
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For explicit numerical analyses, it is convenient to use an analytical form for the elastic function, ge,
with a small number of material parameters obtained using a best fit to experimental data. A proposed
form and its derivative are considered under a number of simplifying but plausible assumptions given
as follows:

1. If the elastic volumetric strain is positive, it is assumed the joint cannot sustain stress so the elas-
tic function must then be 0,

2. For small elastic volumetric strain, E
tan

1
J ¼ EJ

0, a constant with small value,

3. As the elastic volumetric strain increases negatively from 0, the modulus E
tan

1
J increases from EJ

O to
a maximum large, constant value of EJ

M at a reference, elastic, volumetric, negative strain of a
constant eJ;eref ,

4. For eJ;evol ≤ e
J;e
ref , the tangent modulus E

tan

1
J remains fixed at the maximum value EJ

M , and
5. Because the rubble in the joint is based on the surrounding rock, the maximum value of the tan-

gent modulus equals the corresponding value of the tangent modulus of rock, or

EJ
M ¼ ER

1 (20)

The proposed forms for the elastic function and its derivative are

ge eJ;evol

� � ¼ 0 eJ;evol > 0
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0 e
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respectively. Note that eJ;eref is negative and the stress, getr, at which ge transitions to a linear function is

the value when eJ;evol ¼ eJ;eref , or

getr ¼ EJ
0 þ

EJ
M � EJ

0

me

	 

eJ;eref (23)

With EJ
M given by (20), the remaining material parameters that must be assigned values are EJ

0; v
J
0 ,

eJ;eref , and me of which the latter is dimensionless. Presumably, values for these parameters can be
obtained by obtaining a best fit to experimental data.

3.3. Joint plasticity

3.3.1. Assumptions. The formulation for joint plasticity is constructed to obtain the following
perceived features as exhibited by experimental data:
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1. Under compaction (uniaxial strain), the initial response is much softer than elasticity as exhibited
by unloading. Therefore, plasticity must occur immediately and with increased compaction, the
ratio of plastic to elastic strain rate continually decreases until the joint behaves as a linear elastic
material under large pressure.

2. The joint exhibits no strength in tension.
3. The shear strain (due to tangential motion) may be several orders of magnitude larger than the

normal components of strain.
4. After sufficiently large shear motion, continued response in shear is governed by Coulomb’s fric-

tion criterion.
5. Even with no compressive component of traction, joints exhibit resistance to shear because of the

surface roughness in the form of asperities between the mating surfaces.
6. After a certain amount of shear, the asperities wear down and any accompanying cohesive

strength in shear is lost.
7. Compressive traction enhances the apparent strength in shear because of asperities, and
8. Asperities cause dilatation under shear.

These are the features incorporated into the model outlined next.

3.3.2. Basic structure. A conventional plasticity model requires a yield surface and evolution
equations for plastic strains and other internal plasticity variables. A particular model requires
specific forms for a yield function and the evolution functions.

To emphasize the various aspects of plasticity, normal and shear components of traction within the
joint are introduced as follows:

τ Jn ¼ σ J
nn τ Jt ¼ σ J

nt τ Jp ¼ σ J
pn (24)

A classical approach for continuum plasticity is to assume a yield function depends on pressure and
shear. For joints, experimental data are generally available for only two categories of tests, namely,
compaction under uniaxial strain and shear under specified normal traction. In other words, only the
components of stress identified in (24) are considered. Here, yield functions are developed based on
these components. However, the model is intended for three-dimensional applications in which case
there is the implicit assumption that the effect of the remaining components of stress, σJpp; σ

J
tt , and

σ J
tp, are insignificant as far as plasticity is concerned.
Define an effective shear stress for the joint to be

τ Js ¼ τ J2t þ τ J2p
h i1=2

(25)

A yield function for the joint, FJ, is assumed to depend on τ Jn and τ
J
s with the usual criteria that FJ< 0

indicates elastic behavior, yielding occurs if FJ=0, and FJ>0 is not allowed theoretically. The yield
surface FJ=0 is taken to be a combination of three individual yield surfaces for compaction,
effective shear, and tension:

FC ¼ 0 FS ¼ 0 FT ¼ 0 (26)

Expressed alternatively, the value of the joint yield function is the maximum of values for these
yield functions, or

F J ¼ max FC;FS;FTð Þ (27)

The proposed forms for the yield surfaces described by (26) and (27) with and without asperities are
illustrated in Figure 5.

Next, a detailed description for each individual yield surface is given.
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Figure 5. Yield surface for joint in space of traction components. (a) Yield surface with asperities. (b) Yield
surface without asperities.

H. SCHREYER AND D. SULSKY
3.3.3. Compaction. For compaction, it is assumed that the dominant effect is captured through the use
of normal components of stress, τ Jn , and plastic strain, eJ;pnn . This simple structure does not include
coupling with shear through shear-enhanced compaction. The yield function for compaction only is
assumed to be

FC ¼ τ Jcy � τ Jn (28)

where the yield stress in compaction, τ Jcy, is chosen to be negative for negative values of e
J;p
nn . Therefore,

FC<0 (elastic) if τ Jn > τ Jcy. The yield function is assumed to be 0 for positive plastic strain. A feature
consistent with that of elastic behavior for large compaction is obtained by choosing the yield stress to

become negatively infinite as eJ;pnn →eJ;p0 , where eJ;p0 is a negative material constant. One possible form is
the following:

τ Jcy ¼ EJ;p
0 ¼ eJ;p0

mp

eJ;p0

eJ;p0 � eJ;pnn

( )mp

� 1

24 35 eJ;pnn ≤ 0

τ Jcy ¼ 0 eJ;pnn > 0

(29)

in which the value 0 for τ Jcy has been imposed for zero plastic strain because experimental data indicate

a very small value for the initial yield stress. Additional material parameters are Ep
J0 and mp of which

the latter is dimensionless. The tangent plastic modulus is defined to be

E
tan

J;p ¼ ∂τ Jcy
∂epJnn

¼ EJ;p
0

eJ;p0

eJ;p0 � eJ;pnn

( )mp�1

(30)

so that Ep
J0 can be interpreted as the plastic modulus for zero plastic strain.

Suppose unloading occurs from a compacted state so that the normal component of traction is
increasing. This phase of the response is purely elastic until the stress reduces to 0. If the unloading
continues as specified by further positive increments in joint opening, then the elastic joint strain
remains 0, but the plastic strain, which now equals the total strain, is allowed to increase with a
corresponding reduction in absolute value of yield stress. With even more unloading, the joint
plastic strain is positive and a gap forms of magnitude eJ;pnn w

J . Then if the loading process is
reversed, the gap closes, and upon further compaction, the original stress–strain curve is recovered.
If experimental data indicate that cyclic loading causes a change in the stress–strain curve, then a
kinematic feature must be incorporated into the formulation.

For compaction, the evolution equation for plastic strain is assumed to be based on an associated
flow rule, or
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_eJ;pnn ¼ _ωc
∂FC

∂τ Jn
¼ � _ωc (31)

The use of (31) and (8) yields

∂F
∂ωc

¼ � E
tan

1
J þ E

tan
J;p

� �
(32)

which is the conventional form used in the Newton–Raphson procedure to find an increment Δωc.
Because of the exponential forms used for both the elasticity and the yield function, convergence

may be extremely slow. With numerical experimentation, an approximate form of ∂F/∂ωc is used to
reduce the number of iterations. A form that has appeared to be robust is

∂F
∂ωc

����
approx

¼ � E
tan

1
J þ 10E

tan
J;p

� �
(33)

The iterations are terminated when

F

1þ τ Jcy
��� ���þ τ Jn

�� �� ≤ 0:005 (34)

Recall that the other two normal components of plastic strain rate are assumed to be 0. Because both
the normal components of traction and of rate of plastic strain are always negative, plastic compaction
results in positive dissipation.

In summary, an outline has been given for describing the response of a joint to compaction. The

plastic material parameters that must be specified are eJ;p0 ;Ep
J0;m

p
� �

.
If the yield condition indicates that loading is elastic in the compressive regime, then the total strain

components equal the elastic strain components, and the constitutive equation reduces to

_τJn ¼ E
tan

1
J _eJ;enn þ E

tan

2
J _eJ;ett þ _eJ;epp

� �
(35)

where the elastic tangent components must be evaluated for the current value of elastic volumetric
strain.

3.3.4. Shear. Consider the case where the normal component of traction is negative or 0. If τ Js denotes
the effective shear defined in (25) and τJsy represents the yield stress in shear, then the corresponding
yield function for shear is chosen to be

FS ¼ τJs � τ Jsy (36)

Note that τJs ≥ 0, so the additional restriction is imposed that τJsy ≥ 0. Then FS≥ 0 if τ Js ≥ τ Jsy.
There is assumed to be some inherent resistance in shear, or cohesion τ Jas, because of the asperities of

opposing surfaces. After these asperities are worn off, it is assumed further that the tangential motion is
governed by the Mohr–Coulomb criterion. To reflect these features, the yield stress in shear is assumed
to be

τ Jsy ¼ τ Jas � μJτ Jn (37)

in which μJ is a material constant, the friction coefficient for material in the joint. Recall that τJn is
negative. Barton [25] argues persuasively that the linear relation involving τJn is not accurate when
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the absolute value of τ Jn is large, and that a limiting value for shear failure is reached. To accommodate
this feature, a nonlinear function of τJn should be used in (37).

Next, we define a measure of the inelastic motion in shear. Effective plastic strain for shear is
defined to be

beJ;ps ¼ ∫ _beJ;ps dt _be J;p

s ¼ _eJ;pnt

� �2 þ _eJ;ppn

� �2
� �1=2

(38)

For any given problem consisting of cyclic tangential motion, it is quite possible thatbeJ;ps ≫1 even if
the relative tangential displacement of the joint surfaces is small.

The cohesion is assumed to decay monotonically with an increase in the effective inelastic shear
displacement. For simplicity, a linear relation is assumed:

τJas ¼ τJa0Ra 1� beJ;ps

eJ;pa0

" #
(39)

in which τ Ja0 denotes the initial shear strength because of asperities. The ramp function is defined to be

Ra[α] =α if α≥ 0 and Ra[α] = 0 if α< 0. Therefore, eJ;pa0 is the effective plastic shear strain at which the

strength due to asperities is lost, and the cohesive strength due to asperities remains 0 for beJ;ps > eJ;ps0 .
Suppose an associated flow rule is used to obtain evolution equations for the plastic components of

shear strain, eJ;pnt ; e
J;p
np , and normal plastic joint strain, eJ;pnn , so that

_eJ;pnt ¼ _ωs
∂FS

∂τJt
¼ _ωs

τJt
τJs

_eJ;pnp ¼ _ωs
∂FS

∂τ Jp
¼ _ωs

τJp
τJs

_eJ;pnn ¼ _ωs
∂FS

∂τ Jn
¼ μJ _ωs

(40)

in which ωs is a monotonically increasing plasticity parameter and the following equation has been
used for the derivative with respect to τ Jt :

∂FS

∂τJt
¼ ∂FS

∂τ Js

∂τ Js
∂τ Jt

¼ τ Jt
τ Js

(41)

with a corresponding relation for the other component of shear. It follows from (25) and (38) that

_beJ;ps ¼ _ωs
∂FS

∂τJs
¼ _ωs (42)

Note that _beJ;pnn is always positive that indicates that plastic dilatation is occurring under shear motion.
With dilatation, the current yield strength for compaction is reduced and represents a coupling effect
between shear and normal motion. This is a result expected because of the effect of asperities and is
included in the combined model.

Once the asperities have worn off, it is assumed that the result is simple Mohr–Coulomb friction, in
which case no more dilatation is expected. To reflect the pure-slip case after the asperities are
eliminated, a non-associated flow rule is proposed instead of the associated flow rule so that the rate
of the normal component of plastic strain transitions to 0 with shear deformation. To provide a
smooth transition from dilatation to zero normal component, the last evolution equation of (40) is
replaced with
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_eJ;pnn ¼ _ωs
∂FS

∂τJn
Ra 1� eJ;ps

eJ;pa0

" #
¼ _ωs μJRa 1� eJ;ps

eJ;pa0

" #
(43)

The implication is that the evolution equation is non-associative for both regimes of asperity decay
and Mohr–Coulomb friction.

Using the elastic constitutive relations of (13), the definition of (39), and the plasticity evolution
equations of (42) and (43), it follows from (8) that

∂F
∂ωs

¼ �2GJ
tan

�E
tan

1
J μJ
� �2

Ra 1� eJ;ps

eJ;pa0

" #
þ τJa0
eJ;pa0

He 1� eJ;ps

eJ;pa0

" #
(44)

in which He[] denotes the Heaviside function. To ensure that the yield function reduces monotonically
in the Newton–Raphson procedure, care must be taken in the selection of material parameters so that
∂F/∂ωs is always negative. Because the positive part of ∂F/∂ωs in (44) is due to softening, a positive
value of ∂F/∂ωs is a definition of material instability. To ensure stability, the material parameters
must satisfy

2GJ
tan

þE
tan

1
J μJð Þ2 � τJa0

eJ;pa0

≥ 0 stabilityð Þ (45)

If a finite element contains both joint and rock, then the softening feature is magnified by elastic
unloading in the rock. Therefore for numerical simulations, condition (45) is a necessary but not a
sufficient condition for stability of the element constitutive equation.

During the softening regime, the asperities cause dilatation, _eJ;pnn > 0, and this will have the effect of
changing the location of the yield surface for compaction. After the effect of asperities has been erased,

(44) reduces to ∂F=∂ωs ¼ 2GJ
tan
, and the shear yield condition is one of perfect plasticity with a non-

associated flow law that yields _eJ;pnn ¼ 0 and is consistent with the Mohr–Coulomb criterion.

3.3.5. Tensile state. If τJn ¼ 0, it is assumed the joint offers no resistance to motion in either the
normal or tangential directions. Positive values for τ Jn are not allowed to exist. This case is handled
by defining a yield function, FT, for the tensile state as follows:

FT ¼ τJn (46)

With the assumption that the components of shear τ Jt ; τ
J
p

� �
must also be 0 when the normal

component of traction is 0, the evolution equations for plastic strain are chosen simply to maintain
zero rates for these stress components. Recall that for increments in strain, the relevant elastic
constitutive equations are

Δτ Jn ¼ E
tan

1
J ΔeJnn � ΔeJ;pnn

� �þ E
tan

2
J ΔeJtt þ ΔeJpp
� �

Δτpt ¼ 2GJ
tan

ΔeJnp � ΔeJ;pnp

� �
ΔτJp ¼ 2GJ

tan
ΔeJnp � ΔeJ;pnp

� � (47)

with the total strain increments prescribed. The solutions for the increments in plastic strain that yield
zero increments in components of traction are
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2015)
DOI: 10.1002/nag



H. SCHREYER AND D. SULSKY
ΔeJ;pnn ¼ ΔeJnn þ
νJ0

1� νJ0
� � ΔeJtt þ ΔeJpp

� �
ΔeJ;pnt ¼ ΔeJnt ΔeJ;pnp ¼ ΔeJnp (48)

in which (18) has been used for the term involving Poisson’s ratio. However, it is assumed that when
the normal stress is 0, shear motion does not contribute to the decay of asperities so that (42) is replaced
with Δbe J;p

s ¼ 0. The result is that the appearance of joint opening and relative sliding is handled as a
constitutive equation and reflected through the normal and shear components of joint plastic strain.
This precludes the need for an alternative approach such as a slide-line algorithm.

Recall that the plasticity contributions of the remaining strain components are assumed to be
insignificant, or the elastic strain increments equal the total strain increments. Therefore, the
equations for the other increments of stress become the plane-stress relations

Δσ J
tt ¼

1� 2νJ0
� �
1� νJ0
� �2 EJ

1

tan

ΔeJtt þ νJ0Δe
J
pp

h i
Δσ J

pp ¼
1� 2νJ0
� �
1� νJ0
� �2 EJ

1

tan

ΔeJpp þ νJ0Δe
J
tt

h i
Δσ J

tp ¼ 2GJ
tan

ΔeJtp

(49)

3.3.6. Summary of composite yield function. With the three yield functions defined previously, the
composite yield function, FJ, is defined to be

FJ ¼ max FC;FS;FTð Þ (50)

where

FC ¼ τJny � τJn FS ¼ τJs � τ Jsy FT ¼ τJn (51)

The composite yield surface is given simply by FJ=0.
To illustrate how the composite yield surface behaves under a couple of paths, sketches are provided

in Figure 6. Because the initial yield stress is very small, the surfaces FC=0 and FT=0 are nearly
coincident as indicated in Figure 6(a). With loading in compaction, with or without some shear as
suggested by the paths (i) and (ii) shown in Figure 6(b), the surface FC=0 moves to the left with
the other segments of the surface stationary.

Next, consider the path identified as 0-(i)-(ii)-(iii) with ‘0’ denoting the origin as shown in
Figure 6(c). First the compaction yield surface is pushed out to configuration (a). Then for the next
segment of loading, the normal component of traction is reduced, but the shear part is increased so
that the shear yield surface, designated (c), is reached. Shear softening occurs because of ablation of
asperities. While softening, dilatation is occurring that causes the compaction surface to move
inward to location (b). The yield surface decays until the Mohr–Coulomb surface, designated as (d),
is reached after which the yield surface in shear remains stationary. When unloading, the three
components of traction satisfy the elastic relation.

There is the possibility that the revised location of the compaction yield surface will cause both yield
surfaces to be simultaneously activated. The approach proposed here is to simply apply the yield
conditions one at a time until both are satisfied. A mathematically rigorous approach is to satisfy
both criteria simultaneously.

Once the effect of asperities is gone, it is assumed that cohesion is lost; there is no further dilatation,
and the shear surface is associated with sliding only.
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Figure 6. Evolution of yield surfaces in space of traction components. (a) Initial location of surfaces. (b) Lo-
cation of yield surfaces with compaction involving (i) no shear and (ii) a small amount of shear. (c) Yield

surfaces after a complex path involving compaction and shear.

CONSTITUTIVE AND NUMERICAL FRAMEWORK FOR MODELING JOINTS
In summary, after some compaction with small or no shear, the composite yield surface appears as
shown in Figure 5(a). After compaction with sufficient shear, the composite yield surface reduces to
the form illustrated in Figure 5(b).

3.4. Closing comments

This section provides the description of a basic constitutive model for a joint. The elasticity model is
isotropic but nonlinear with a constant Poisson’s ratio. The plasticity model includes both compaction
and shear. The effects of shear-enhanced compaction and dilatation due to asperities are included. In
addition, joint opening is carried as a positive value of the normal plastic strain component, and
tangential motion is reflected through corresponding values of plastic shear strain.

In the next section, the structure for handling a joint in a finite element framework is given together
with the outline of a numerical algorithm. Example stress–strain paths are given to illustrate the
features of the joint constitutive equation by itself, and then in combination with a layer of rock.
4. CONSTITUTIVE APPROACH FOR AN ELEMENT CONTAINING A JOINT

4.1. Preliminary remarks

The finite element method is widely used so this section provides a procedure for relating joint and
rock stresses and strains to corresponding stress and strain for an element. The stress, σ, and strain,
e, for an element are defined with no superscript. Only cube-shaped elements of side h and with one
joint parallel to one side of the element are considered. Because the eight-node brick element
provides a representation for the displacement field that is complete to only first-order polynomials,
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we assume in the following that the components of strain are constant over each element as obtained,
for example, by evaluating the components at the center of each element. The potential singularity in
the stiffness matrix can be removed by hourglass control, a procedure that is considered to be more
efficient than the alternative approach of evaluating the stress at multiple points within an element.
The configuration is shown in Figure 7. The width of the rock within the element is

wR ¼ h� wJ (52)

It is useful to define dimensionless widths for the rock and joint as follows:

wJ ¼ wJ

h
wR ¼ wR

h
wJ þ wR ¼ 1 (53)

Strains and stresses are assumed to be piece-wise constant over the respective domains defined by
the joint and rock. If element strain components are prescribed, then the objective is to obtain
increments for the joint and rock strains so that the deformation is compatible, equilibrium (traction)
is fulfilled, and the joint and rock constitutive equations are satisfied.

4.2. Kinematic and equilibrium requirements

Suppose a strain increment, Δe, is prescribed for the element. The objective is to find the corresponding
increments in strain for the joint, ΔeJ, and the rock, ΔeR, the stress in the joint, σ J, the stress in the rock,
σR, and finally, the stress, σ, in the element.

4.2.1. Kinematic requirement. First, it is assumed that increments of strain Δett,Δepp, and Δetp for the
joint in the t� p plane are small in comparison with the other components because of the constraint
imposed by the adjacent rock. Therefore, the kinematic restriction is imposed that

ΔeJtt ¼ ΔeRtt ¼ Δett ΔeJpp ¼ ΔeRpp ¼ Δepp ΔeJtp ¼ ΔeRtp ¼ Δetp (54)

Compatibility for the other components of strain results in

Δenn ¼ wJΔeJnn þ wRΔeRnn Δent ¼ wJΔeJnt þ wRΔeRnt Δepn ¼ wJΔeJpn þ wRΔeRpn (55)
Figure 7. Notation for an element containing a joint.
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4.2.2. Equilibrium requirement. The appropriate components of stress for the element, the joint, and
the rock, must satisfy traction continuity

τn ¼ τ Jn ¼ τRn τt ¼ τJt ¼ τRt τp ¼ τ Jp ¼ τRp (56)

and the remaining components satisfy overall equilibrium, as follows:

σtt ¼ wJσJ
tt þ wRσR

tt σpp ¼ wJσ J
pp þ wRσR

pp σtp ¼ wJσ J
tp þ wRσR

tp (57)

The equilibrium conditions of (56) and (57) can also be expressed in terms of increments.

4.3. Numerical procedure

For a given increment in the element strain tensor, the object is to obtain stress and strain components
for the element, the joint, and the rock, with a numerical procedure that satisfies the constitutive
equations, and the kinematic and equilibrium requirements.

First, note that the increments in (54) are prescribed and not altered for a step. Each of the remaining
strain component increments is assigned an initial value equal to each other and to the assigned element
strain increments, that is, start with

ΔeJnn ¼ ΔeRnn ¼ Δenn ΔeJnt ¼ ΔeRnt ¼ Δent ΔeJnp ¼ ΔeRnp ¼ Δenp (58)

Note that (55) is satisfied. Perform the following update:

enn←enn þ Δenn eJnn←eJnn þ ΔeJnn eRnn←eRnn þ ΔeRnn
ent←ent þ Δent eJnt←eJnt þ ΔeJnt eRnt←eRnt þ ΔeRnt
enp←enp þ Δenp eJnp←eJnp þ ΔeJnp eRnp←eRnp þ ΔeRnp

(59)

Apply the relevant constitutive equations and update the corresponding stress component for joint
and rock. Define weighted residuals of the components of traction as follows:

Rn ¼ wJwR τRn � τ Jn
� �

Rt ¼ wJwR τRt � τ Jt
� �

Rp ¼ wJwR τRp � τ Jp
� �

(60)

If the magnitudes of the residuals are sufficiently small, a traction equilibrium solution has been
obtained. The reason for the coefficient wJwR is that if the thickness of either the joint or the rock is
0, there is no need for equilibrium iterations. If the criteria on the residuals are not satisfied, then
obtain sub-increments in strain and traction that reduce the magnitudes of the residuals. The
governing equations are derived next for an iterative process similar to the Newton–Raphson
procedure to force the residuals to 0.

Suppose components of strain are considered to be the primary variables. Because the total strain
increments for the element are fixed, the corresponding sub-increments for the element are 0, and
from (55), the sub-increments in strain for the rock, δeRnn; δe

R
nt and δeRnp , and for the joint, δeJnn; δe

J
nt

and δeJnp, must satisfy

wJδeJnn þ wRδeRnn ¼ 0 wJδeJnt þ wRδeRnt ¼ 0 wJδeJpn þ wRδeRpn ¼ 0 (61)

Because only one normal strain and two components of shear strain are involved, and under the
assumption of an elastic step, the constitutive equations yield
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δτRn ¼ ER
1δe

R
nn δτJn ¼ EJ

1

tan
δeJnn

δτRt ¼ 2GRδeRnt δτ Jt ¼ 2GJ
tan

δeJnt

δτRp ¼ 2GRδeRnp δτ Jp ¼ 2GJ
tan

δeJnp

(62)

From (60) the corresponding equations for sub-increments of the residuals are

δRn ¼ wJwR δτRn � δτJn
� �

δRt ¼ wJwR δτRt � δτ Jt
� �

δRp ¼ wJwR δτRp � δτJp
� �

(63)

Choose these sub-increments to satisfy

δRn ¼ �Rn δRt ¼ �Rt δRp ¼ �Rp (64)

Define weighted elastic moduli as follows:

ERJ ¼ wR EJ
1

tan þwJER
1 GRJ ¼ wR GJ

tan
þwJGR (65)

Then the use of (63), (64), and (61) yields specific equations for sub-increments in strain for both
joint and rock:

δeJnn ¼
Rn

ERJwJ δeJnt ¼
Rt

2GRJwJ δeJnp ¼
Rp

2GRJwJ

δeRnn ¼ � Rn

ERJwR δeRnt ¼ � Rt

2GRJwR δeRnp ¼ � Rp

2GRJwR

(66)

These strain increments are sent to the respective constitutive equations for rock and joint. In the
rock constitutive subroutine, the increments in traction will be identical to those given in (62). In the
joint constitutive equation, the total strain sub-increments will consist of elastic and plastic parts, so
the resulting sub-increments in traction will differ from those given in (62), and an iterative
correction is necessary. The constitutive equation algorithms provide the updates for all stress and
elastic and plastic strain components.

In summary, the iterative procedure for forcing traction equilibrium consists of the following:

Start of Equilibrium Algorithm
1. Begin by assuming strain increments in joint and rock equal increments in element from (54) and

(58). Apply constitutive equation algorithms for rock and joint to obtain components of traction.
2. Determine the weighted residual of (60). If the magnitudes of the residuals are less than the given

criteria, equilibrium has been obtained and the procedure is stopped. Otherwise proceed to the
next step.

3. Compute sub-increments in joint and rock strain using (66).
4. Call the constitutive equations for rock and strain to obtain sub-increments in traction.
5. Update tractions and go to Step 2.
End of Equilibrium Algorithm

4.3.1. Handling a gap. There is a possibility that a gap may initiate based on a positive value of either
τRn or τJn after the use of the trial elastic step of (54) and (58). Now, the traction equilibrium conditions
are replaced with the conditions that the traction components are 0. First, consider the normal
component. Sub-increments δeRnn; δe

J;e
nn ; δe

J;p
nn

� �
are considered that force both τRn and τJn to 0, or
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δeRnn ¼ �τRn
ER
1

δeJ;enn ¼ � τJn
EJ
1

(67)

in which E
tan

1
J is replaced withEJ

1;0, because if the traction is 0, the volumetric elastic strain will be small.
The first of (61) becomes

wJ δeJ;enn þ δeJ;pnn

� �þ wRδeRnn ¼ 0 (68)

from which the sub-increment in plastic strain is

δeJ;pnn ¼ RG RG ≡� 1

wJ wJδeJ;enn þ wRδeRnn
� �

(69)

The requirement for gap initiation or gap opening is that RG> 0.
However, there is also the possibility that a gap already exists as indicated by a positive value of eJ;pnn .

The current step may make the gap larger or may reduce the gap width if δeJ;pnn < 0. The result is that
(69) is applied if either RG> 0 or eJ;pnn > 0.

Once a gap is formed, the shear traction components must be reduced to 0, and the corresponding
plastic components of strain adjusted to account for the tangential slip. The adjustments in elastic
strain components and traction are the following:

δeRnt ¼ � τRt
GR δeJ;ent ¼ � τ Jt G

J
tan

δeRpn ¼ � τRp
GR δeJ;epn ¼ � τJp G

J
tan

τRt ¼ 0 τRp ¼ 0 τ Jt ¼ 0 τ Jt ¼ 0

(70)

In analogy with (69), the sub-increments in shear components of plastic strain are

δeJ;pnt ¼ � 1

wJ wJδeJ;ent þ wRδeRnt
� �

δeJ;ppn ¼ � 1

wJ wJδeJ;epn þ wRδeRpn
� � (71)

By placing the formation of a gap within a constitutive equation formulation, there is no need for a
separate contact-impact algorithm.

4.4. Closing comments

In this section, an isotropic elastic constitutive equation is used to model rock and an elastic-plastic
model is used for the joint. Because the joint width is a constitutive variable, the same constitutive
equation can be used for faults, which are typically defined by much larger widths. The joint
constitutive equation involves nonlinear elasticity with a constant Poisson’s ratio and a plasticity
model consisting of three parts to account for compaction, shear, and zero traction. For each part, a
yield function and evolution equations are prescribed so that a conventional plasticity algorithm can
be used.

The kinematic and equilibrium equations used to account for an element that consists of a joint
included within rock are also described. These equations are solved numerically rather than
analytically, although an analytical solution could provide a more efficient numerical algorithm.
However, by using the proposed numerical approach, the constitutive equations for rock and joint
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are treated separately, with the implication that if either constitutive equation is modified to
accommodate agreement with experimental data, the overall structure remains unchanged.
5. FEATURES OF THE JOINT CONSTITUTIVE MODEL

5.1. Values for material parameters and dimensionless variables

Because the joint is considered embedded within a rock, values of constitutive parameters for rock are
considered first. Granite is chosen for illustrative purposes. Within the wide range of values suitable for
granite, the following values have been chosen:

YR ¼ 60GPa νR ¼ 0:2 ρR ¼ 2; 600kg=m3

f RC ¼ 240MPa τRnf ¼ 24MPa
(72)

in which ρR, f RC , and τRnf denote mass density, compressive failure stress, and tensile failure stress,
respectively. With these choices, it follows that

ER
1 ¼ 66 GPa ER

2 ¼ ER
1=4 2GR ¼ 50 GPa (73)

and the speed of wave propagation for uniaxial strain is

cRstn ¼ ER
1=ρ

R
� �1=2 ¼ 5; 000 m=s (74)

Dimensionless variables, denoted with a bar, are chosen next. Let σref and Eref denote reference
values for stress and elasticity, respectively. Although strain is already dimensionless, it is
convenient to scale strain with a reference strain, eref. Then dimensionless variables become

σR ¼ σR

σref
eR ¼ eR

eref
E
R
1 ¼ ER

1

Eref
E
R
2 ¼ ER

2

Eref
G

R ¼ GR

Eref
(75)

Poisson’s ratio is already dimensionless.
It is assumed that for the problems under consideration, any component of normal stress is less than

the compresive failure stress, so f RC is chosen as the reference stress σref . Choose a reference elastic
modulus to be Eref ¼ ER

1 . For convenience, choose the reference strain to be

eref ¼ f Rc =E
R
1 ¼ 0:004 (76)

Then the constitutive equations, illustrated with one normal component and one shear component,
become

σR
nn ¼ E

R
1 e

R
nn þ E

R
2 eRtt þ eRpp

� �
σR
nt ¼ 2G

R
eRnt (77)

in which

E
R
1 ¼ 1 E

R
2 ¼ νR

1� νR
¼ 0:25 2G

R ¼ 1� 2νRð Þ
1� νRð Þ ¼ 0:75 νR ¼ 0:2 (78)

The range of absolute values of components of stress and strain will be [0, 1].
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5.2. Dimensionless variables and material parameters for a joint

First, assume that stress, strain, and the elastic tangent parameters in the joint have been scaled by the
same parameters used for rock. The parameters used in the elastic part of the joint constitutive equation
are EJ

M ;E
J
0, ν

J
0 , e

J;e
ref , and me so their dimensionless counterparts are

E
J
M ¼ E

R
1 ¼ 1 E

J
0 ¼ EJ

0

ER
1

eJ;eref ¼
eJ;eref

eref
(79)

andν J0 andm
e are already dimensionless. The initial value of the tangent stiffness must satisfy0 < E

J
0≤1.

The dimensionless reference elastic straineJ;eref may be larger than unity. For example, ifeJ;eref ¼ 3, then the

elastic volumetric strain at which the elasticity part becomes linear is eJ;eref ¼ 0:012.

Similarly, for the plasticity part, all traction components and yield functions are divided by f Rc to obtain
dimensionless variables. All strain components and strain parameters are scaled by eref. For the compaction

part, the dimensionless material parameters become mp; eJ;p0 ¼ eJ;p0 =eref and E
J;p
0 ¼ E

J;p
0 =Eref , and for

the shear part the corresponding parameters are eJ;pa0 ¼ eJ;pa0 =eref ; τ
J
a0 ¼ τJa0=f

R
c and μJ.

5.3. Element variables

With the assumption that dimensionless constitutive variables, including element stress and strain
components, are used consistently, the overbars are dropped. Increments of components of element
strain, Δe, are prescribed for the element constitutive equation subroutine, and the element stress, σ,
is obtained. The value of the element size, h, does not explicitly appear in the constitutive equations;
only indirectly through the definitions of the relative widths of the joint and rock, wJ and wR ,
respectively. Values for the following constitutive and element variables must be prescribed: rock
elasticity parameters: ER

1 ; v
R ; joint elasticity parameters: EJ

M ;E
J
0 , ν J0 , eJ;eref , m

e; and joint plasticity

parameters: EJ;p
0 ;mp, eJ;p0 , μJ ; τ Ja0 e

J;p
a0 .

Recall that all the strain components for the rock, and the strain components, eJtt; e
J
pp; e

J
tp, for the joint

are elastic only. Furthermore, eJtt ¼ eRtt ¼ ett, eJpp ¼ eRpp ¼ epp, and eJtp ¼ eRtp ¼ etp so these joint and rock
variables do not have to be saved separately. The nonlinear joint elasticity model requires the
volumetric elastic strain that is available as the sum of the normal strains. The joint plasticity model
uses the normal component of plasticity as a parameter.

Therefore, there is a total of 22 internal variables that must be stored as part of the element
constitutive equation subroutine. They are the following:

a. the six components of joint stress, σ J
nn; σ

J
nt; σ

J
np; σ

J
tt; σ

J
pp; σ

J
tp,

b. the six components of rock stress, σR
nn; σ

R
nt; σ

R
np; σ

R
tt; σ

R
pp; σ

R
tp,

c. nine components of strain consisting of the rock strains, eRnn; e
R
nt; e

R
np , the elastic joint strains,

eJ;enn ; e
J;e
nt ; e

J;e
np , and the plastic joint strains, eJ;pnn ; e

J;p
nt ; e

J;p
np , and

d. one plastic shear history variable, beJ;ps .

The relatively large number of history variables is the price paid to maintain the flexibility of being
able to change either the joint or the rock constitutive equation without doing the algebra so that
equilibrium and kinematic equations within the element are automatically satisfied.
5.4. Representative features of the joint constitutive model

5.4.1. Values of material parameters. First, we provide a brief summary of the effects of changes in
values of the material parameters on the predicted stress–strain response of a joint for simple paths.
Later, the features of the model are shown for more complicated paths that include combined
compaction and shear, the creation of gaps, handling an initial gap, and the combination of joint and
rock within an element.
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Certain material parameters are self explanatory and are not varied. These parameters are the
uniaxial strain, elastic parameter for rock, Poisson’s ratio for rock, the cohesive strength of the joint
under zero normal stress, and the Mohr–Coulomb friction parameter for the joint. The fixed values
chosen for these parameters are

ER
1 ¼ 1 νR ¼ 0:2 τJa0 ¼ 0:1 μJ ¼ 0:4 (80)

The values assigned for the other material parameters for each figure are given in Table I. The entry
‘Varies’ implies that the various values for this parameter are provided within the figure. The choice of

W
J ¼ 1 provides an element that is composed entirely of joint material. A smaller value ofW

J
implies

that the constitutive element response includes both joint and rock.

5.4.2. Compaction. The first set of results are designed to indicate the effects of material parameters
on predictions of uniaxial strain compaction. Because the components of plastic normal strain in the t-
and p-directions are 0, the normal components of elastic and plastic strains, eJ;enn and eJ;pnn , respectively,
are equal to the corresponding elastic and plastic volumetric strains.

The plots shown in Figure 8(a) show that for a given value of stress, reductions in the value of the
initial elastic modulus,EJ

0, result in an increase in elastic strain. A corresponding result holds for plastic

strain as a function of the initial plastic modulus,EJ;p
0 , as shown in Figure 8(b). As shown in Figure 8(c)

an increase in the exponent, me, provides an increase in elastic strain. The value me=1 provides a linear
relation, and me<1 would yield a relation more suitable for rubber, at least for small strains. The plot
of Figure 8(d) indicates an inverse relation between the exponent mp and the plastic strain. The results
of Figure 8(e) and (f) suggest that changes in values of the reference elastic strain, eJ;eref , and the

reference plastic strain, eJ;pref , provide the largest changes in predicted elastic and plastic strain,
respectively. These are probably the most important parameters for fitting experimental data.

5.4.3. Combined compaction and shear. Next, we provide a brief summary of the predicted response
of the joint under combined compaction and shear. The effects of values for the slope of the shear part
of the yield surface, μJ, and the initial strength in shear due to asperities, τ Ja0, are self-evident. We show
the effects of the two remaining parameters, the normal compaction and the accumulated shear strain,

eJ;pa0 , on the shear response. We illustrate shear behavior by first loading in compaction under uniaxial
strain, and then superimposing a shear strain while holding the compaction strain fixed. The loading
part of the shear response is strictly elastic until the limit surface is reached. Then shear softening
occurs accompanied by dilatation, which causes the compaction surface to soften as well. The
compaction part of the yield surface is then activated. The normal stress causes strain hardening.
The overall effect for this path is that the compaction surface remains stationary in stress space
during the shear-loading phase.
Table I. Values of material parameters used for plots shown in specified figures.

Figure\Parameter WJ EJ
0 me eJ;eref EJ;p

0 mp eJ;pref eJ;pa0

8(a) 1 Varies 2 �1.5 0.2 2 �1.5 1.6
8(b) 1 0.2 2 �1.5 Varies 2 �1.5 1.6
8(c) 1 0.2 Varies �1.5 0.2 2 �1.5 1.6
8(d) 1 0.2 2 �1.5 0.2 Varies �1.5 1.6
8(e) 1 0.2 2 Varies 0.2 2 �1.5 1.6
8(f) 1 0.2 2 �1.5 0.2 2 Varies 1.6
9(a) 1 0.2 2 �1.5 0.2 2 �1.5 1.6
9(b) 1 0.2 2 �1.5 0.2 2 �1.5 Varies
10 1 0.1 4 �3.0 0.1 4 �3.0 1.6
11 1 0.2 2 �1.5 0.2 2 �1.5 1.6
12 Varies 0.1 4 �3.0 0.1 4 �3.0 1.6
13 Varies 0.2 2 �1.5 0.2 2 �1.5 1.6
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Figure 8. The effects of changes from standard values of particular material parameters on plots of stress ver-
sus strain for loading in uniaxial strain. (a) Effect of EJ

0. (b) Effect of E
J;p
0 . (c) Effect of me. (d) Effect of mp.

(e) Effect of eJ;eref . (f) Effect of e
J;p
ref .

CONSTITUTIVE AND NUMERICAL FRAMEWORK FOR MODELING JOINTS
Figure 9(a) shows the shear stress–strain response for three values of the normal compaction stress
σJnn . Because of the rather elementary yield surface for shear, the response is elastic up to the initial
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Figure 9. Response of joint in shear showing effects of normal stress and the shear strain parameter. (a)
Effect of normal stress, σJnn. (b) Effect of asperity shear term, eJ;pa0 .
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yield stress. The nonlinear elastic aspect of the model is reflected through the different slopes for the
elastic loading segments. After the yield surface is activated, the response is one of softening until
the residual Mohr–Coulomb surface is reached. Next, for the choice of σJnn ¼ �0:4, we illustrate the

expected variation of softening slope reflected by different values for eJ;pa0 in Figure 9(b).
To reflect experimental data for shear when compaction is followed by shear loading, an alternative

form must be used for the shear yield function. The yield surface should evolve to a limit surface
similarly to the initial yield surface in this work, and then soften. Moreover, as suggested by Barton
[25], the limit surface itself should have a limiting value of maximum shear stress for large negative
values of σJnn (or for large mean pressure).

As illustrated in Figure 10(a), we consider a slightly more complicated path in strain space, to indicate
the features that are implicit with the model. First, the material is loaded in uniaxial strain compression
as indicated by segment O-A. Then negative increments of uniaxial strain are prescribed simultaneously
with positive increments in shear strain to obtain segment A-F. Intermediate letters identify points of
significance with regard to the elasto-plastic response. A corresponding plot of shear stress versus
normal stress is given in Figure 10(b), of normal stress versus normal plastic strain in Figure 10(c),
and of shear stress versus plastic shear in Figure 10(d).

For segment A-B, the response is elastic so the plastic components do not change until the stress
reaches the initial yield surface for shear at point B. Then softening causes the shear stress to reduce
with plastic volumetric dilatation, or positive increments in plastic normal strain. Dilatation is shown
in segment B-C-D in Figure 10(c) as a reduction in the normal component of plastic strain. This
reduction comes to an end once the maximum amount of shear softening is reached at point D. As
indicated by (43), no additional dilatation is allowed to accumulate once the effective plastic strain

eJ;ps attains the value eJ;pa0 . For segment B-C, the increments in total normal strain are positive but
with a smaller magnitude than those of the plastic strain increments. The result is that the elastic
strain increments are negative so the negative normal stress increases in magnitude as indicated in
Figure 10(b). After point C, the amount of dilatation is reduced to the point that the normal elastic
strain increments become positive and the normal component of stress resumes the expected
property of reducing in magnitude. At point D, the initial yield surface has softened to the Mohr–
Coulomb surface. For the subsequent leg, D-E, the shear response is one of perfect plasticity, while
the normal part is elastic with no change in normal plastic strain. At point E, both the shear and
normal components of stress have reduced to 0. The continuation of the path in segment E-F results
in a reduction of the normal plastic strain, as shown in Figure 10(c), and represents an opening of
the joint, that is, the formation of a gap. Similarly, Figure 10(d) shows a continued increase in the
shear plastic strain to a final value of approximately 4.4. This value is greater than the total shear
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Figure 10. A path showing the interaction of compaction and shear. (a) Path in strain space. (b) Path in stress
space. (c) Normal stress versus normal plastic strain. (d) Shear stress versus shear plastic strain.
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strain of value 4 shown in Figure 10(a) and is a consequence of the elementary form for nonlinear
elasticity where the shear modulus is highest for the loading phase A-B, and then is of a reduced
value for segment D-E. As these plots show, the interaction of elasticity and plasticity, and or
shear and normal effects, can be quite intricate, and care must be taken in interpreting the response
provided by a model. However, these rather elementary examples provide a basis for examining
the behavior of more complicated, and presumably more realistic, models that include shear-
enhanced compaction and improved interaction predictions involving shear and normal stress
components.

5.4.4. Compaction and unloading of the joint with gap formation. This example is one of uniaxial
strain designed to show the general features of a joint associated with compression, unloading, gap
formation and closure, and reloading. In Figure 11, plots of normal stress versus plastic strain,
elastic strain and total strain illustrate the features of the plasticity, elasticity, and total element
response of the joint constitutive equation. The initial loading phase O-A shows simultaneously the
nonlinear features of both the elasticity and the hardening part of plasticity during loading. Upon
unloading for segment A-B, the elasticity path is re-traced while the plastic strain remains fixed.
Additional positive increments of strain provide segment B-D where the total strain equals the
plastic strain. Further positive increments in total strain provide segment D-C and represents the
formation of a gap. Again, the total strain equals the plastic strain and the gap width equals the joint
width times the plastic strain. Negative increments in total strain provide segment C-D and
represents gap closure. Finally, further negative increments for total strain provide segment D-E that
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Figure 11. Traction versus uniaxial strain for compaction, unloading, gap formation and reloading.
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corresponds to reloading the material. The model does not contain a kinematic hardening feature so
that reloading from zero strain follows the initial loading curve.

5.4.5. Pre-existing gap. Occasionally, the experimentally determined relationship between normal
stress and normal strain shows an initial loading phase where the stress remains approximately zero
as the strain increases. A simple approach to handling this phase is to treat it as a gap. To this end,
assume the stress is actually zero in this phase and assign an initial value of plastic normal strain
equal to the strain associated with this initial loading. Then the stress becomes nonzero only after
the gap closes.

5.4.6. Element response for variable joint widths. Figure 12 shows the effect of the dimensionless
width of the joint on the stress–strain response of the element. In each case, compressive strain
increments are prescribed until the normal stress equals �1. The plots of stress versus joint elastic

strain and plastic strain are identical for all values of W
J
as is the plot of stress versus rock strain.

The only part that changes is stress versus element strain as shown for the cases where the joint

width equals h, h/2, h/4, and h/8 or W
J ¼ 1; 1=2; 1=4 and 1/8, respectively. As expected, when the
Figure 12. Normal stress versus strain for loading, unloading, and extension to positive strain showing the
effects of variable joint width.
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Figure 13. Shear stress softening with different joint sizes.
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width of the joint is decreased, the response of the element transitions from the response of the joint to
a response that is closer to that of the rock.

5.4.7. Element softening. Next, in Figure 13, element shear stress versus element shear strain is
shown for the path described previously in Figure 9 but with various ratios of joint width to element
width. Note that the peak shear stress and the final Mohr–Coulomb residual values vary with the
relative joint width because the plastic joint normal strain for a given normal compaction stress
varies with the relative joint width. Part of the normal strain in the element is associated with rock.
The key feature of this plot is that the softening portions of the stress–strain curves become steeper
as the width of the joint becomes smaller relative to the width of rock in an element. Ultimately, a
stress reversal will appear and conventional numerical algorithms will not work. The suggested
approach is to monitor the situation for a given choice of material parameters and choose an element
size so that stress reversal, or even abrupt softening, does not occur.

5.5. Concluding remarks

This section illustrates that the proposed joint model provides the following features: (i) nonlinear
elasticity; (ii) elastic-plastic compaction; (iii) dilatation under initial shear; (iv) no additional
dilatation after a certain amount of shear (Mohr–Coulomb); (v) gap formation; (vi) gap closure and
reloading with no hysteresis; (vii) treatment of initial gaps; and (viii) satisfaction of kinematic and
equilibrium constraints within an element for a joint aligned with an element side.
6. SUMMARY AND CONCLUSIONS

We have described a basic joint constitutive model with a composite yield surface composed from
three individual surfaces that separately govern joint behavior in compaction, shear, and tension.
The composite surface is constructed to reflect the following combined features:

i. The tensile strength is 0.
ii. Gap formation and sliding are tracked through normal and shear components of plastic strain.
iii. Compaction is governed by nonlinear elasticity with plasticity.
iv. Shear under compressive or zero normal traction is nonlinearly elastic up to a limit state

followed by non-associative softening with dilatation to a residual Mohr–Coulomb plasticity
with no further dilatation.

v. The dilatation from shear softens the compaction yield surface, as does gap formation.
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vi. These characteristic features were illustrated by computing the predicted constitutive response
for a variety of prescribed stress and strain paths. A parameter study was also performed to de-
lineate the inherent variability in the model and also to indicate the model’s versatility and adapt-
ability to fit experimental data.

The multi-surface construction of the yield surface provides a general framework for constructing
yield surfaces that can accommodate more complicated joint constitutive behavior. The emphasis in
this work has been on the description of joint behavior under compaction with a relatively simple
model for shear. For example, a different form for the yield function could be used to reflect an
inelastic response under shear up to the limit surface. Other authors have addressed this aspect of
joint behavior in considerable detail, and there is no reason why these more detailed yield surfaces
could not be included within the current framework.

A fairly standard Newton–Raphson procedure is used to determine the elastic-plastic behavior of
joints as governed by the constitutive model. An additional, Newton–Raphson procedure is
introduced to impose equilibrium constraints when a joint is embedded in rock and the joint is not
resolved by the finite element discretization. The numerical technique allows a joint and rock to
exist within a single finite element with the effective behavior fully described. The joint can be of
arbitrary width within the element, but is so far limited to be parallel to the side of a square element.
It is also possible to have a joint span more than one element, as might be sensible for a simulation
involving a fault. Moreover, the model can describe multiple joints within an element if they are
represented as a single joint with an effective width. This formulation is analogous to defining a
representative volume element and using a continuum representation of joints for large-scale
simulations. The advantage here is that the detailed properties of the joint are automatically included
within the formulation.

Our main objectives have been: (i) to show that the essential features of joint behavior can be
captured with a rather elementary constitutive equation; (ii) to argue that gap formation and sliding
can be captured within the constitutive equation; (iii) to provide the joint width as a primary variable
so that sliding and gaps are handled within the constitutive equation; and (iv) to describe a
numerical algorithm for handling joints of arbitrary width within an element. We believe these are
significant items not readily available in the technical literature. Ultimately, such a constitutive
approach can be used to perform two-dimensional and three-dimensional studies to evaluate the
relative importance of various features inherently associated with joints, and to study stress
distributions in jointed rock to assess the vulnerability of important engineering structures.
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